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1.0 INTRQDUCTION

This report sumkrizes the work performed on NASA Contract NAS5-10667
modification number three. Objectives of this contract were to improve the
programuing capability of the OBP system and at the same tima reduce CPU
control circuitry for improved packaging feasibility. The Statement of Work,
associated with this contract, was divided into three main tasks. The first
task, Task 1, desli with the investigation of two techniques for improving
the addressing cupability of the OBP., The evaluation of Task 1 indicated that
neither addressing approach was suitable for the OBP system and as a result
& new approach was szelected for Task 2. Section 3.0 of this report lists
those changes selected for Task 2, After these changes were finaliged, they
were designed into the CPU, and drawings were updated. The changes associated
with Task 2 were implemented so that the control circuitry of the CPU was
reduced. This reduction in control circuitry aided the implementation of
Task 3.

The objective of Task 3 was to evaluate the control circuitry on
the basis of redesigning if for better partitioning. Existing control
circuitry in the CPU was organized in groups that had similar logic structures.
These groups were then used in the partitioning of the central logic, The
results of this reorganization were evaluated and it was felt that a more
efficient approach to partitioning could be taken. Therefore, a preliminary
investigation into the use of read-cnly memories for the control settion was
widertaken since this approach appears to simplify the partitioning task. The
results of this study are also presented in the report.




2.0 TASK ] ‘
The purpose of Task 1 of this report was to evaluate two addressing

techniques for the OBP-CPU. These two addressing approaches were chosen as

the most desirable approaches to consider at the outset of the contract.

Direct inputs from OBP programmers indicated both approaches would provide

the desired addressing flexibility. Therefore the selection of the preferred

approach was primarily dependent or: its impact on the hardware. The following

addressing techniques were evaluated.

2,0.1 Qutline of Changes for Task. i
The following outline illustrates the changes to the CBU for

Techniques I and II.

2.0.1.1 Technique I
Modifications:

1. Bits 7-12 replace bits 1-5 for minor op-code decoding.

operand.

Instructions Added
1. LOAD A IMMEDIATE
2. PLUS A IMMEDIATE
3. MINUS A IMMEDIATE
L. LOAD EA IMMEDIATE
r ' 5. PLUS EA IMMEDIATE
6. MINUS EA IMMEDIATE

{ | 2. Bits 1-6 of the instruction word are used as the immediate

2.0.1.2 Technigue II l
Modifications:
1. Bits 12 and 13 of the instruction word are used as an addressing '
mode field for decoding one of four addressing modes.
2. Addition of immediate addressing to applicable major op-éode '

instructions. An 11 bit immediate operand is used.




3. Addition of indirect addressing to applicable major op-code
instructions. A 5 bit page register is required to maintain
the 16 bit address.
2.1 Addressing Technique I
The discussion of this technique is divided into two sections. The
first section discusses the general modifications required in the CPU
and the second section discusses the specific details of the additional instruc-

tions,

2.1.1 Modifjcations to the CPU

The implementation of this approach, required a chenge to the instruc-
tion field decoding. A total of six instructions was added to the instruction
set and all six were decoded as minor op-code instructions. Since these
instructions added immediate addreasing capabilities to the CPU, it was
desirable to utilize the least significant six bits of the instruction word
as the immediate value and this selection was incorporated into the design.
This decision was made because of the available gating and flow organizations,
and the inherent programming ease associated with the use of the least
significant bits. The selection of the least significant six bits as the
immediate value required a change in the minor op~code field decoding. In
the original systems, bits 1-5 were decoded as the minor op-code. Due to the
addition of the immediate instructions, the minor op-code field was moved
to bits 7-12 and associated decoding was changed to satisfy decoding require-

ments.

2.1.2 Addition of Instructioris
Technique I provided immediate addressing capability for the OBP




programs by adding six minor op-code instructions to the instruction set.

These added instructions were similar to existing ma jor op-code instructions
with the difference being the use of bita 1-6 of the instrustion word as an
operand rather than part of an addreas for the operand fetch.

instructions were investigated:

1.
2.

2.1.2.1 logd Immediate Ingtructions

Two load immediate instructions, LOAD A IMMEDIATE and LOAD EA |
IMMEDIATE were evaluated for Technique I. These load immediate instructions
gate the immediate operand field of the instruction word through the adder

10AD A IMMEDIATE
PLUS A IMMEDIATE
MINGS A IMMEDIATE
10AD EA IMMEDIATE
FLIS EA IMMEDIATE
MINUS EA IMMEDIATE

and into the selected register.

Two phases (¢l, ¢2) are required to implement these instructions with
phase one utilized as the normal instruction fetch phase., The sscond phase,
¢2, executes the immediate load by gating the immediate operandiinto the
adder which in turn is clocked into the selected register. Since load functions
do not require carry delays through the adder, only one clock cycle is
necessary to implement the load. A total of three clock cyclea are required
to complete the load immediate instructions.

The exdsting instructions, LET and SET EXTENSION WITH, are similar 4n
function to the load immediate instructions. In #,» the existing instructions

The following




fetch an operand from memory and load the selected register. The fetch-load

function is exesuted in three clock cyclea, for a total of five clock cycles
for complete execution. Since the load immediate instruction requires three
clock eycles for completiom, two clock cycles are saved,

The total hardware impact of these instructions was minimal, with the
ma Jority of the changes being implemented in the control area. The MORA,
SUMACC, SUMMQ, Mq clock and ACC clock control circuits require modification.

In addition, logic was added to decode these instructions and the adder inputs
were changed. The gates controlling the most aignificant 12 bits of the A
input to the adder were changed from two inputs to three inputs in order to
inhibit these bits during the load immediate instructions.

2.1.2,2 Plus Imnediate Inatruction

Two plus immediate instructions, which add the immediate value to the
accunulator or to the extended accumulator, were evaluated for Technique I.

The plus immediate instructions gate the immediate value of the instruction word
into one set of adder inputs and the selected register into the other set

of adder inputs. Then, the adder output is clocked into the eselected

register.

These two instructions have similar phasing and are implemented by
utilizing much of the same gating. These instructions require two phases
(¢1 , ¢2) with phase one used as the normal instruction fetch phase. Fhase
two (which requires 2 clock cycles) gates in the immediate portion of the
instruction word, and inhibits the remaining inputs to that set of adder inputs and
also gates the selected register into the other set of adder inputs. The
adder is then clocked into the selected register and the instruction is completed

in four ddock cycles. In the original CFU design, the PLUS instruction (which




is very aimilar to the plus immediate instructions) adds the MOR to the ACC,
During the second phase of the instruction, the operand fetch and add are
executed. These two operations are completed in three clock cycles., Thus,

the PIUS instruction is five clock cycles in duration and only one cycle longer
than the plus immediate instructions.

Very few additional gates were required to implement the plus immediate !
instructions since existing phasing was used to implement the two mitructions. |
Circuitry was required for the decoding logic, MORA, ACCB, MJB, SUMACC, and
SUMMQ control lines as well as the ACC and MQ clocks.,
2,1.2.3 Minuge Immediate Instrugtions

Two minus immediate instructions, which subtract the immediate
value from the accumulator or from the extended accumulator, were evaluated
for Technique I. The ainus immediate instructions subtract the immediate
portion of the instruction word from the selected register and then store
the result in the selected register,

Two methods for implementing these two instructions were considered.
The first approach investigated the possibility of utilizing a load immediate
into the register not being selected and then negating this value. This
approach destroyesd the contents of the unused register and thus was
discarded as mmacceptable.

The second approach, which waes selected for the design, evaluated
the subtraction of the immediate value from the selected register.

The organization of the two minus. immediate instiucticns is similar
to the MINUS Anstruction requiring two phases (fi!1 , ¢2) and utiliging phase one as °
the instruction fetch phase. Phase two which requires 2 clock cyclss,




gates the complement value of the immediate pperand to the least significant six ‘
bits of one set of adder inputs and one's into the remaining 12 inputs.
Simultaneously, the selected register, along with the Co carry are gated into !
the other set of adder inputs. The result of this 2's complement addition ‘
is then clocked into the selected register. Two clock cycles are required
to complete ¢2. A total of four clock cycles are required to complete the
minus immediate instruction, as compared with five clock cycles for the
original MINUS instruction.

Most of the additional logic for the minus immediate instructions was
added in the control with only the adder inputs being changed in the arithmetic-

register area. The 12 most significant gates of one set of adder inputs had
one input gates changed to two input gates for use in "gating on" those 12
most. significant inputs of the adder. The "gating on" feature set one's into
these inputs so that a 2's complement addition could be performed. In the
control, doding and phasing gates were needed to implement the two phase
operation associated with these instructions. Additional gating was required
for the MOR A, ACC B, CO, MQB, MQ clock and ACC clock signals. The change

to the register-adder section amounted to changing the one input gates to two
input gates on the 12 most significant bits of the adder so that f'a

can be forced into these bits.

2.2 jAddressing Technigue IT

Addressing Technique II did not add instructions as such to the OBP

»

but added two addressing capsbilities (immediate and indirect addressing)

which affected a number of instructions. Only modifications to the CPU

were nesessary to implement these changes and they are disoussed in the

following paragraphs.




2.2.1 Design Modification
During the initial evaluation of this addressing approach, the removal

of the index register was considered to facilitate implementation of this tech-
nique. After the initial investigation of the OBP program was completed, it
was decided that a definite need for indexing existed, and the imdex

register was not removed.

With these two addressing modes added to the CPW, a total of four
addressing modes were available in the CPU and some type of detecticn circuitry
was necessary. To properly detect these modes, it was decided that bits 12
and 13 of the instruction word would be used as a 2 bit field for address
mode selection. The addressing modes and their associated codes are listed
in Table 2-2.

Inmediate addressing capability was added to applicable instructions
as referenced in Table 2-1. This addressing feature permitted the use of the
least significant 11 bits of the instruction word as an immadiate operand,
Since the basic flow organization of the CPU was such that operands were
gated through the adder and the adder alsc controlled register to register
flow, it was advantageous to use the existing flow organization for the immediate
addressing scheme.

Because bit 12 of the instruction word was used for address mode
detection, and an 11 bit immediate operand would satisfy the majority of com-
putational requirements, an 11 bit immediate operand was selected for imple-
mention in the CPU, The use of only an il bit operand required that the
decoding of the immediste mode would control the 7 most significant inputs
of the adder which were utilized when the full 18 bit operand was selected.
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TABLE 2-1

Control Modifications For
Inatructions Utilizing Immediate Addresaing

Seven MSB of Adder Seven MSB of Adder Six ISB of MCR
Gated Off Gated On Used Direatly
Plus IF SUB SET SCALE
TRANSFORMED BY IS EQUAL SHIFTED BY ‘
1ET IS GREATER CYCLED BY
ANDED WITH IS LESS DOUBLE SHIFTED BY
TIMES MINUS DOUBLE CYCLED BY
THEN GO TO
ORED WITH

SET EXTENSION WITH
USE SUB

GO TO

DIVIDED BY

ECRED WITH

SUB PLUS

EXECUTE

HALT

I0

RESUME
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TABLE 2-2 . |

Addressing Mode Selection |
Address Mode Field Addressing Mode |
13 12
0 0 DIRECT ADDRESSING
0 i IMMEDIATE ADDRESSING
1 o INDEXING
1 1

INDIRECT ADDRESSING

10




Two sets of adder inputs had to be controlled so that both "gating on" and
"gating off" provisions were present. In order to accomplish this, the "A"
inputs to the adder were changed as follows. First, the seven most significant
two input gates were changed to three input gates for "gating off" control.
Second, the seven most significant one input gates were changed to two input
gates for '"gating on" control. Also associated with the immediate addressing,
was the inhibit control on the memory request lines, as well as associated
clock and input control modifications. In order to properly utilize the
imnediate approach in shift, cycle and scale setting instructions, oontrol
circuitry was added to control the setting of the scale register and operation
counter with the least significant six bits of the instruction word. Table 2&1
lists the instructions and their associated control,

In general, the execution of instructions using the adder was
decreased by only one clock cycle with immediate addressing. In the
original design, the fetch and add phase were overlapped so they could be
executed in three clock cycles. To decrease this time mkther a faster
adder must be utilized or the memory cycle time for the OBP must be decreased.

Indirect addressing was kmplemented for the instructions referenced
in table 2-1. Indirect addressing uses the normal operand fetch phase as
én address fetch phase which fetches the address used to fetch the operand.
This additional phase adds two clock cycles and an extra memory cycle to
each instruction utilizing this mode of addresaing.

The original system was designed to access 65K of memory through
@ 12 bit address field and a 4 bit page which was appended to the address field.
The Page Register value was loaded into the four most sighificant bita of the

11




address register during the instruction fetch phase. Thus, the firat
4096 core locations could be accessed without setting the page regilster.
When higher core locations were accessed, the Page Register had to be set
with a Set Page instruction priep to executing the given instruction.

When bit 12 of the instruction word was selected as a field bit for
address mode selection, only an 11 bit address field was available to address
memory. The use of an 11 bit address field only allows access of the first
2048 locations of core, therefore some means of controlling the 12th bit of
the address field was required. Since the present CPU organization utilized
the Page Register for address control, the utilization of this organization
would enable complete address modification with minimal impact on hardware,
Therefore, an additional bit was appended to the Page Register.

With the introduction of indirect addressing, an additional control
phase similar in structure to the index phase was added to the CPU. The
decoded output 6f the address mode selection field selected this phase to
feteh an address, which was clocked into the address regiater and ugsed as
the normal operand address. The associated control circuitry was modified
when this phase was added to the CPU and additional control was added to request
memory during the indirect address fetch. Since the instruction word bits
12 and 13 were decoded for the address mode selection, it was also necessary to
ensure that the gate delays through the decoder to the phase selection circuitry '
was not critical to the system operation. Therefore, the number of gates connected ’

in a serial fashion had to be limited. This necessitated the use of a parallel
gating structure and resultediin a greater humbor of gates.

12




2.3  Supmary of Tagk 1

Task 1 was organized so that two addressing techniques were evaluated
for the OBP system, A summary of these techniques follows:
2.3.1 (- e I

The addition of immediate addressing instructions was evaluated in

Technique I of this report. Six instructions were added to the instruction
set providing the capability to use immediate operands in OBP programs.
The following six instructions were added:

1. Load A Immediate _—

2. Plus A TImmediate

3. Mnus A Immediate

4. Load EA Immediate

5. Plus EA Immediate

6. Minus EA Immediate

The addition of these instructions required the change of the minor op-code

field from bits 1-5 to bits 7-12 of the instruction word since bits 1-6

are used as the immedliate operand field. It was possible to use bits 7-12
as the immediate operand, but that approach had a significant impact on hard-
ware beside the confusion associated with using thesa bits as an immediate
value.

The purpose of adding immediate instructions to the CPU is to
execute instructions utilizing partial word operands with a decrease in
execution time., The savings in program time however, must bejjustified by a
limited increase in hardware. While the total impact on hardware associated
with these instructions was minimal,the savings in program time was very

13




limited. The immediate add, or immediate 2's complement add'(aubtract) instruc-
tions are only one clock cycle faster than the original PIUS and MINUS instructions
and this minimal saving in execution time does not juatify the implementation
of this technique. in addition, the OBP programmer expresaed their feeling
that more addresaing capability than that gained with this technique was
desired for increased programming flexibility. Thus, the technique was rejected.
2.3.2  Technigue IT

The addition of immediate addressing and indirect addressing
capabilities for the OBP system were evaluated in Technique II of this report.
The implementation of this technique dictatied that some type of addressing
mode selection scheme must be implemented intthke CPU to distinguish between the four
possible addressing modes. As a result, bits 12 and 13 of the instruction
word were selected as the field for use in address mode selection. These
bits were decoded and are referenced in Table 2-2.

Since the immediate addressing technique utilized the least signifi-~
cant 11 bits of the instruction word as an immediate eperand. The need for
an operand fetch was eliminated. Because the immediate operand did not use
all 18 bits, a method of controlling the remaining seven bits was required.
Consequently, the adder gating was changed., $ince the operand fetch and add
phases were overlapped in the original CPU instruction, a gain of only one
clock cycle was realized for any immediate instruction fully utilizing the
adder. While the additional circuitry associated with the immediate addressing

approach was minimal, it was not justified by the limitdd savings in execution
time.

When indirect addressing was incorporated into the CPU, the additien
of a bit to the Page Register, the control of the memory request line, and
14
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the new phasing added, had & big impact on the control circuitry of the CPU,
In addition, indirect addressing adds two clock cycles to the exesution time
of applicable instructions. The additional execution time and associated
increase in hardware were the main factors in rejecting this approach,

It was desirable to reduce emecution time in the approaches discussed
above so that program efficiency would be improvad.’ Two means of reducing |
instruction execution time were considered; either design a faster adder,
or reduce the basic memory cycle time. Since these two changes would have a
considerable impact on hardware, they were rejected.

After evaluating both techniques, it was decided that the geals
which origindlly motivated these changes (increased program executiwn speed
and flexdbility with minimal hardware impact) were not achieved.

3.0 TASK 2

The study associated with Task 1 dealt with the investigation of
two approaches for improving the addressing capability of the OBP system.
These two techniques were evaluated and then discussed with NASA personnel
and programmers assoclated with the OBP. The results of these discussions
led to the decision to eliminate both addressing approaches since neither
proved satisfactory for the OBP srstem. Instead, two alternative approaches

for improving the addressing capability of the OBP were suggested.

First, multiple index registers could be added to the CPU, Second,




the one index register could be utilized along with indirect store and indirect
load instructions, The second approach was chosen primarily because of the
increased hardware associated with the first approach,

In addition to the two indirect instructions » it was requested
that CPU registers be available for use as loop counters for controlling both
program loop execution wid branching. To satiafy this request, instructions
to test and increment registers were added to further increase the addressing
and operational femtures of the OBP system.

Accompanying the test instructions was the request for the ability
to manipulate and transfer data in the CPU registers. In particular, it was
felt useful to compute an index velue ir the accunulator and transfer this
value to the subscript register (S8), while not destroying the present value
of the SS. This operation is performed in the present OBP by executing
the following four instructions: PLUS, SAVE SUBSCRIPTS IN, YIELD, and
USE SUBSCRIPT. These four instructions could be replaced by PLUS and
EXCHANGE instructions. In order to satiasfy these requests, three instructions
were added to the instruction set to exchange the accumulator,the extended
accumulator, and the subscript register. '

Although the new instructions were proposed with the improvement of
system performance in rdnd, the decision to implement them was subject to
consideration of the impact of integrating these instructions into the design.
It was particularly desirable to delete any circuitry not being used in the
present system applications. The investigation of the hardware impact of these
instructions was carried out with this thought in mind and it was found that—
certain:tnstructions and functions were not utilized by the programmers in the

16




present programs. As the evaluation of implementing Task 3 was concluded,
the instructions were added with the least possible amount of additional
hardware, and all circuitry having limited application in preaent programs
was removed. The following changes were incorporated,
3.0.1 Additional Instructions

1. LOAD INDIRECT

2, STORE INDIRECT

3. IF EA # 0, SET D* and INCREMENT EA®

2
L. IF SS # 0, SET D and INCREMENT SS

5. EXCHANGE A3 & SS
6. EXCHANGE A & EA
7. EXCHANGE EA & SS
NOTE: (1) EA - Extended Accumulator
(2) SS - Subseript Register
(3) A - Accumilator
(4) D - Decision Flip Flop
(5) MOR- Memory Operand Register
3.0.2 Functions Deleted
1. SCALE REGISTER
2. OR-AND FLIP FLOP
3.0.3 Instructionp Removed
1. LET SCALE
2. SET SCALE
3. OR
4. AND

17




3.0.4  Instructions Modified
1. NORMALIZE ~ The normalized count is now stored inthe subscript
regiaster
2. MULTIPLY - Scaling is deleted from multiply
3. DIVIDE - Scaling, correction cycles, and overflow tests
are deleted from divide.
The chart in Table 3-1 illustrates the impact of these changes,
3.1 Addition of Instructions
Based on the resultsoSf Task 1, seven instructions (specified in
Paragraph 3.0.1 of this report) were added to the OBP instruction set. The
intent of these instructions was to improve the programmers ability to write
programs directly associated with the OAO satellite applications.
The organization of the CPU is such that data flow paths inte: connect
the register circuitry via the adder. These flow paths were used to implement
the new instructions and thus only the circuitry associated with the CPU

control logic was increased,

3.1.1 [Instruction Description and Discussion

Seven new instructions have been selected for integration into the
CPU design. A discussion of these instructions is given in the following
paragraphs.
3.1.1.1 Indirect Instructions

Two indirect instructions, INDIRECT LET and INDIRECT YIELD were
selected to be incorporated into the CPU design. The selection of these two
instructions was based on the desire for additionsl capability to easily access
buffer memory areas not readily accessible with one index register. This

18
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increased capsbility could be achieved with multiple index registers, _However,
indirect addressing provided similar capabilities with less hardware.

The indirect load instruction loads data in the accumulator in the
same manner as the LET instruction, except that the indirect load requires
an additional phase which is two clock cycles long. This phase fetches an
address which is set into the address register, which in turn is used to
fetch the normal operand fetch address. Since all memory access functions

require two clock cycles, the indirect load is two cycles longer than a

LET instruction., Three phases (¢l, ¢2, ¢3) are required to implement this
instruction. Phase one is the normal instruction fetch phase, phase two

fetches the address for the operand fetch, and phase three fetches the

operard and loads it into the accumulator.

Ch The indirect store instruction stores data in memory in the same
manner as & YIELD instruction except for the data storage phase. The indirect
store instruction requires an additionalpphase used to fetch an address that

is set into the address register and used as an address to store data. The

Wz} indirect store requires three phases (¢l, ¢2, ¢3) for complete execution
5 and is one clock cycle longer than a YIELD, Phase one is the normal instruc-
tion fetch phase, phase two fetches the address used for data storage, and
phase three stores the data at that address,
Both instructions were decoded as major op-code instructions with
‘,Ni indexing available for both. The associated phasing, decoding, and control
: modifications were minimal due to the use of existing phasing and flow
organizations. Control was also added to the memory request logic for the

extra memory cycles. Eighteen (18) gates were required to implement these

instructions.
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3.1.1.2 Test for Zero Instructions

Two instructions (TEST SS and TEST EA) were added to the instruction
set to test register contents for gzero. These instrusttions required no |
operand fetch and thus were implemented as minor op-code instructions. They
permit the SS and EA registers to be used as pointers or counters for calling

up sequential arrays of data, and for performing loop and branch operations.

The instructions were implemented in two phases (¢l, ¢2) and are completed
in five clock cycles. The instructions operate as follows.

Phase one executes the normal instruction fetch funttion, while
phase two performs the test for zero on the selected register, If the
register under test is zero, no action is initiated in phase two and the
instruction is completed, but if the register tested in phase two is not

zero, the "D" flip flop is set and the register under test is incremented

by one.

The implementation of these instructions required little
additional hardware since existing zero detection circuitry was used for
performing the tests. Each register under test is gated into the adder and the

"SUM=0" output is tested for a "1"., This output is then used to control the _—
setting of the "D" flip flop and the incrementing of the register. No new

. circuitry was introduced into the registersarithmetic section of the CPU

: and only a small amount was added in the control area. Full use of existing
flow paths was employed to hold the additional logic to a minimum. Twelve (12)
gates were required to implement these two instructions.

3.1.1.3 Exchange Instructjions

Three of the seven new instructions are “reglster exchange" instruc-

21




tions. These instructions consist of exchanging the accumulator and the
extended accumulator, exchanging the accumulator and the subscript register,
and exchanging the extended accumulator and the subscript register.

Addition of these instructions allows the programner to exchange
registers without using several memory access instructions. One particular
application of the exchange accumulator and subscript register is in the
computation and use of an index value. First the index value is computed in the
accumulator, then the accumulator and subscript registers are exchinged
8o that the computed index values can be used immediately without destroying
the existing index value.

The exchange instructions consist of two phases (¢1’ ¢2), and are
five clock cycles in duration. No operand fetch is required with these
instructions and they are decoded as minor op~code instructions. Phase one
is the normal ins*ruction fetch phase and phase two performs the exchange.
When executing an exchange with the A, the following sequence is executed
in phase two. The MOR is cleared and the A is gated through the adder
and stored in the MOR. Then the EA or SS (depending on the instruction being
executed) is gated through the adder and is clocked into the A. The MOR
is then gated through the adder to the EAcor SS and the reglster is clocked.

If the instruction exchanges the EA and S8, the following sequence
is executed. During phase two, the MOR is cleared and the EA is gated through
the adder and stored in the MOR., Then the SS is gated through the adder and
clocked into the EA. Finally, the MOR is gated into the adder and clocked
into the SS to complete the instruction.

These instructions make use of the existing register organigation,

with register to register flow accomplished via the adder and theréfore only
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control circultry modifications are required. Twenty-one (21) gates are
required to implement these instructions.
3.2 Deletdons ~ Circujtry apd Instructions
In addition to the seven instructions added in Task 2, the following
circultry and instructions were deleted.
The following deletions were made:
1. Removal of the OA flip flop.
2. Removal of the scale register.
The following instructions were modified:
1. Normalize
2. Multiply
3. Divide

The folldwing instructions were removed:

1. LET SCALE
2. SET SCALE
3. OR

L. AND

The decision to remove registers and instructions was a combined hardware-software
decision. When the two indirect instructions were added, two major op-codes

were required and only one major op-code decoding was available for these
instructions. The two alternatives which existed were either to add additional
circultry for the decoding, or to delete existing major op~code instrusttions.

To properly evaluate the alternatives, the hardware and programming aspects

of these changes were investigated. An evaluation of the first alternative R

the addition of decoding circuitry, verified there would bs a considerable impact
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on the hardware and programming manual documentation and this alternative was
rejected. The second alternative was to investigate the possibility of removing
ma jor op-code instructions. An evaluation of this alternative showed that
removal of the seldom used scaling function would free a major op-cods.

The following section is a diacussion of the removal of this function.

3.2.1 Scale Re e Associated ructions

In addition to its limited use, the scale register and its associated

circuitry were non symmetrical relative to other register and control logic.
This made it difficult to partition the scale register logic and since a
total of 113 gates and flip flops were associated with the scale register,
its removal was attractive from the standpoint of hardware simplification.

The deletion of the sdale register eliminated the LET SCALE
instruction (major op-code) and the SET SCALE instructhon (minor op-code).
In addition, three other instructions NORMALIZE, TIMES, aid DIVIDED BY were
affected by the removal of the scale register. In all, a total of 113 gates and
flip flops were removed by the elimination of the scale register.

First, the NORMALIZE instruction, which previously stored the

normalized count in the scale register, had to be changed. Since the

normalized count must be saved, two possible solutions were considered. First s

the count could be stored in a fixed memory location. Second, the count could

be stored in a CPU register. The register store approach was considered more

practical since extra logic and execution time is requirdd for the memory '
store-cycle of the first approach. Storage of the normalize count in a

register utilizes the basic flow paths of CPU, and requires negligibie change to

the logic. An additional six gates are required on the adder. However, thess
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replace the six originally used on the scale register. The subscript register
was selected as the register to be used for storing the normalized count
since the accumulator and extended accumulator are normalized during the
NORMALIZE instruction. Only a small amount of control logic is required
to implement this transfer.

A second instruction affected by the removal of the scale register
was multiply (TIMES). TIMES originally had a scaling phase that shifted the

product, based on the value in the scale register. The scaling phase and

its associated hardware were eliminated with the removal of the scale register.

The third instruction affected by the scales register was DIVIDED BY.
The divide instruction had a scaling phase that shifted the dividend prior
to performing the divide itself., Again, the direction and amountoef the
shift was determined from the value in the scale register. The scaling phase
and its associated hardware were removed with the elimination of the scale

register,

- 3.2.2 Modification of the Divide Instruction

In the original design of the CPU, the decision to implement a
total hardware divide was based on the evaluation of the usage of a divide
instruction. The initial investigations indicated that the divide would be used
frequently and would prove most efficient, both in power saved , and execution
time saved, if it was totally performed with hardware. Further investigations
into the application of the divide instruction in the system programs
indicated that the divide instruction was used to a very limited extent. This
knowledge, accompanied with the fact that divide used a considerable amount

of control logic, prompted the decision to eliminate the ma jority of the
circuitry associated with divide. '
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The .original hardware divide made both the divisor and dividend
positive prior to performing the divide algorithm so that no correction to the
quotient would be required. After the divide was completed, the sign of the
remainder was tested to see if it was negative. If it was negative, the divisor
was added to the remainder for the correction cycle. After the correction
cycle was completed, the quotient was placed in the accumulator and the
remainder in the extended accumulator. Also included in the hardware divide were
the divide overflow testa,

It was decided that all special phasing associated with the divide
algorithm would be removed and the divide instruction was reduced to perform
the standard add/subtract shift cycles of the non-restoring division algorithm
with 81 gates and flip flops eliminated by the modification. As a result,
prior to the divide, the programmer must ensure that the divisor is larger,
in magnitude than the dividend to prevent overflow from occuring. In addition,
if an exact quotient (quotient may be off by 1 in the least significant bit)

or remainder is desired the appropriate corrections cycles must be performed

as indicated in Table 3 -2.
3.2.3 Elimination of the OR=-AND Flip Flop

The OR=-AND (OA) flip flop was initially designed into the CPU
as a means for controlling the setting and resetting of the "D" flip flop.
The setting of the OA indicated an "and conditional test" to reset the "D
flip flop, while the resetting of the OA indicated an "or conditional test"
to set the "D" flip flop. An examination of the system programs indicated
that only the "OR" state of the OA flip flop was being used. Since only one

state of the flip flop was being used, the decision was made-to eliminate it.
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Directly associated with the elimination of the OA flip flop was
the deletion of two.minor op-code instructions; the OR and AND instruction.
Removal of these two instructions, the OA flip flop and the setting of the "D"
flip flop resulted in & decrease in control circuitry.

3.3 Sumngyy of Task 2

Task 2 was organized to make changes in the CPU design that would give ‘

the programmsr greater flexibility in addressing and other programming opera-

tions. The total impact on hardware was the prime factor in decidiéng which
approach to take,

A total of seven new instructions were added to the OBP instruction
set. Table 3-1 illustrates that a total of 51 gates were required to fully
implement these seven instructions. The additional flexibility and programming
speed gained from thase instructions was large, relative to the percentage
increase in hardware to implement the seven instructions. The hardware was
held to a minimum by utilizing the existing CPU flow paths to implement
these instructions and the circuitry added was entirely in the control area.

Four instructions, the scale register and the OA flip flop were

removed. TIMES, DIVIDED BY, and the NORMALIZE instructions were affected by
the removal of the acale register. In addition, DIVIDED BY had overflow tests
and setup and correction cycles removed from the hardware.

The total change in the circuitry resulted in a reduction of circuits
used in the CPU, While the seven instructions added circuitry to the control

area, the deletions removéd much more control circuitry. In comparing the

ddditions with the deletions, the additions tend to follow the basic symmetry ’

of the CPU design, while the deletions tended to be unsymmetrical, A total

oty
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decrease of 160 gates was.realized with the improved instruction set. Table 3-1
indicates where the 160 gates were removed from the logic.

The elimination. of unique type control logic from the CPU was most
desirable from a packaging standpoint. The hasic register-arithmetic portion
of the CPU is readlly partitioned, while the control logic does not appear
to be readily partitionable. To enhanwe packaging efficiency of the control
logic, the non-similar logic is to be minimized. The removal of the scale
register and OA flip flop and simplification of the divide instruction eliminated
a portion of that logic which is difficult to partition and thus should simplify
the packaging of the control logic.
4.0 IASK 3

This section discusses the results of a study of methods for redesign-
ing the OBP control logic in such a way as to introduce a greater degree of
symmetry or regularity into its structure. It is hoped that such a redesign will
facilitate partitioning the logic into a relatively small number of general
purpose logic structures and thereby make it feasible to mount it on hybrid
substrates.

In the breadboard, almost all inputs ani outputs from individual gates
require external connections by way of pins on the printed circuit boards.
Since the number of pins is restrictad, the density of gates is severely
limited. It is hoped that by partitioning the logic into more complex struc-
tures with many of the interconnections made on the substrate itself, the gate \
density may be increased and the size of the processor reduced. To make
this packaging method economically feasible, however, it is necessary that

the rumber—of-distinct types of substrstes be mintmiged. Thus complex logic
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structures which occur repeatedly throughout the control circuitry must
be ldentified.

4.l Problems Encountered in Partitioning Control Logic

Unlike computer register logic in which essentially identical logic
structures are associated with each bit, control logic is in general a
formleas irregular conglomeration of gates and flip flops. This is a
result of the fact that this logic is used to generate all the unrelated timing
and data dependent conditions which control the various data transfers
and transformations within the computer. Each block of logic performs a
function which is different from, and independent of, the functions of
neighboring blecks.

A further complication results from the Landency of the logic
structures which generate individual control signals to be relatively small
groups of gates with large numbers of inputs and outputs., These external
connections are difficult to reduce because they come from and go to a wide
variety of places in the processor. For example, the signal which sets the
END flip flop has over 20 inputs from such sources as the phase flip flops,
various tests of the contents of the operation counter, selected bits of the
memory operand register, instruction decoder, etc. It is impossible to package
all these control signalisources on the same substrate. with the END flip flop.
As long as conventional gates and flip flops are used as the basic control
building blocks, it appears that pin limitations are still the factor
which control the degree to which packaging density may be increased.

4.2 Evaluatjon of Present Control logic

Before a redesign of the OBP control logic was attempted, the
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feasibllity of partitioning the present design was evaluated. The logic was
partitioned into as few types of fairly complex structures as possible. This
not only provided an estimate of the magnitude of the problem but also

served as a reference by which other designs could be judged. During a

previous study, the registerllogic was partitioned into 18 sixty pin sub-
strates of ‘three different types. Since there are roughly the same number

of gates in the control logic as in the register logic, this number provides
an order of magnitude goal for the control logic partitioning.

As expected, the frequency of occurrence of similar logic structures
sharply decreased as their complexity increased. In fact, no groups containing
more than three gates were found which occurred often enough (e.g., more than
eight times) to be considered general purpose structures. Examples of the
recurring structures which were found are shown in Figure 4-1. It can
be seen that the savings in external connections is small as long as the
occurrence of similar complex structures is so limited.

Using these small general purpose blocks and implementing the
rest of the control logic with discrete gates and flip flops, a partitioning
scheme was organized which required 60 substrates (assuming 60 pins per
substrate) of five different types.

4.3 Approaches to Control Logic Redesign

Two approaches to the redesign of the OBP control logic were
investigated. The first consisted of constructing several relatively complex
logic structures which could serve as general purpose logic blocks. These
blocks were not identical to any block actually appesring in the coatrol,
but were similar to several slightly different ones. Each block was designed
to be substituted for a maximun number of similar structures with a minimum
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Figure 4-1. Examp »s of Recurring Structures
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wastage of pins and gates. By replacing most of the control logic with a
few groups of gates in this manner, m much greater_ degree of regularity was
introduced without changing the basic building blocks of the system.

The other approach which appeared to offer a significant reduction
in the complexity of the OBP control was the use of a microprogrammed LSI
memory to store a majority of the control signals for the CPU. By sequencing 4
through a block of locations whose outputs directly or indirectly generate
the OBP control signals, many of the functions presently performed by discrete
gates can be performed instead by a much more compact LSI memory.

In the following paragraphs, these two design approaches will be
discussed in more detail,

4.3.1 General Purpose Logic Structure Approach

The functions performed by the control logic are determined by
the various algorithms used to impdament the instruction set. Given these
constraints, however, the actual configuration of gates and flip flops necessary
to perform the operations in the proper order is not fixed. In the original
OBP control, the logic was designed with economy of gates in mind. However,symmetry
is a more important characteristic for partitioning. Therefore, extra pins and
gates can be included if by doing so it becomes possible to design one circuit
which can replace each of several slightly different ones. The pins wasted by
this practice will hopefully be more than compensated for by the pins saved
through the use of a more complex interconnection pattern on the substrates.

To design these structures, the OBP control circuits were categorised
by structural similarity; Then one general purﬁoeo circuit was designed to
implement the switching function represented by each of these similar logic
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structures. In general this necessitated wasting inputs and even entire
gates when the number of inputs varied from structure to structure. Output
pins were wasted when some circuits required the true signal to be brought
out, others required the complement, and some required that both be available.

By providing the smallest number of external connections necessary to meet

the needs of all the structures in the group, this waste was minimized.

Approximately 90 percent of the OBP control logic was implemented

with i3 general purpose logic structures, Examples of these and their charac-
teristics are shown in Figures 4-2 to 4-5 and Table 4vl. The 10 percent of

the control logic which is not represented by these circuits consists primarily
of miscellaneous single gates and expander inputs which can probably be mounted

on the same substrates as the larger structures, thereby obviating the need
for a special substrate type.

Given the first order partitioning of organizing discrete gates
into general purpose logic structures, there remains the second order partition=-
ing problem of placing these structures on substrates. The logic structures were
assigned to the substrates systematically to minimize both the total number of
substrates and the wastage of gates, However, some wastage was unavoidable
where logic structures would not fit on substrates in axactly the quantities
required by the system. i

In the partitioning of the control in its present form, it was
assumed that the substrates to be used would have 60 pins. This assumption was
made because all the hybrid substrates manufactured by Westinghcuse thus far
have béer. of this type. However, since control logic partitioning is so
severely affected by pin limitations, it seemed Feasonable to investigate the

consequences of using substrates with more pins. A scmewhat arbitrary decision
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Logic Structure Type No. of Gates No. of Pins Quantity Required

I 22 53 3 \

II 8 19 20 |
I11 6 18 7
v 5 9 7
v 14 28 8
VI 7 11 10
VII 6 16 9
VIII 3 7 41
X 5 L 5
X 4 12 16
XI 10 19 8
XII 6 12 8
XII1 4 ) 32

Characteristics of General Purpose Logic Structur;s

Table 4==1




was made to perform the partitioning using substrates having 60, 90, 120 and
150 pina. Incrementa of 30 pins were felt to be large enough to show significant
differences in the partitions. The upper limit of 150 pdns was chosen as
the greatest number likely to be available on a substrate.

Tha results of this partitioning are summarized in Table 4=-2. It
can be seen that even if general purpose logic structures are available, the
gains are small for 60 pin substrates. A large improvement 1s achieved by
using 90 pin substrates. As the number of pins is increased to 120 and 150,
further reductions in both the number of substrates and the number of types
can be made. However, as the number of integrated circuit chips increases,the
amount of substrate area used for interconnections also increases. Consequently,
it may prove necessary to use larger substrates to physically realize the 120
and 150 pin configurations.
4.3.3 S of Control ic Redesi

It appears that significant reductions in the total number of
substrates and the number of substrate types may be achieved in this manner but
only by relaxing the pin limitations to at least 90 pins per substrate. At
present only 60 pin substrates are available hut no fundamental reasons are
known why larger numbers of pins and perhaps larger substrates (should over-
crowding prove to be a problem) cannot be made available, It is also
interesting to note (see Table 4-2) that the total number of external connections
tends to be reduced by using substrates with more pins. This implies that an
increase in reliability is possible through the use of general purpose logic

atructures since the primary sources of failures are wired connections.




No. of Max, No. of No, of Pins
Pins/Substrate No. of Types Substrates Chips/Substrate (total)
60 7 52 13 3120
90 5 27 18 2450
120 4 22 22 2430
150 3 16 29 2400

Results of Logic Partitioning

Table 4-2
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The substrate count for the control logic only approached the 18
substrate goal set by the register logic partitioning as the number of pins
was increased to 120, The fact that such reductions cannot be achieved
with 80 pin substrates demonstrates the problems caused by the inherently
large numbers of external connections required for control logic.
4.4 Microprogrammed Control lLaégic
To design a microprogrammed control unit, each machine instruction
is subdivided into "microinstructions', each of which represents the control
operations needed during one period of the system clock. Each microinstruction
is represented by one word in the memory. When a microinstruction is accessed, —_
the bits of this word are used to provide the necessary control signals.
Blocks of microinstructions are addressed in sequence to execute complex
machine instructions. If data dependent conditions are required, the control
memory output is used as an input to an external logic circuit which

implements the necessary function.

In addition to data conditioning logic, circuits external to the

memory will be needed to control the order and timing of the microinstruction
addressing sequence. It has been estimated that the external logic will
require approximately 300 gates or roughly 30 percent of the present control.
4.4.1 Partitioning the Memory

For the portion of control logic pepresented by the memory, parti-
tioning is simple and efficient. First, since the interconnections other

than address inputs and control signal outputa are all made on memory chips,

-—

difficulties due to pin limitations are greatly lessened. Secondly, since

all the memory chips are connected in the same manner, only one type of




substrate need be designed for the entire memory. If read/write memories

are used, all memory substrates will be exactly identical. If read-only
memories are used, everything except the contenta of the individual chips

will be identical for all substrates. In either case, the use of one substrate
type to implement 70 percent of the contral logic represents a ma jor
achievement. -

A preliminary design of the control memory needed for the OBP
indicates that a memory of approximately 150 words by 120 bits should be
adequate. This size assumes that all words are of uniform length and is
therefore a maximum figure. Since all microinstructions do not make use of
all the control outputs, it may be possible to design a memory with individual
blocks of words containing only the control bits needed to perform particular
microinstructions. For the following results, however, a uniform word
length memory was assumed.

To permit an estimate to be made of the number of substrates required,
it was further assumed that & 256 word by 8 bit memory chip was used as the
basic building block. This is the size of one of the largest monolithic MOS
memory chips currently available and was cansidered a realistic candidate

for selection should.this design approach be sulected, :

Using these assumptions it was determined that 15 such chips would ’
be required. It was found that these could be placed on four identical
60 pin substrates,

4.4.2 External logic Partitioning
Although a detailed partitioning scheme was not worked out for the control

logic which was not incorporated into the metory, extrapolation from the results
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obtained from the design of the general purpose logic structures described
earlier should provide reasonably accurate estimates of what can be-achieved.
Assuming a8 linear relationship between the muber gates and the number of
substrates required, it should be poasible to place the 300 external gates on
16 sixty pin substrates or six 90 pin substrates. If 90 pin substrates are
used, it appears that all of the control logic could be mounted on
approximately 10 substrates.
4eh.3 Problems Intraduced by Microprogremming

One of the most serious drawbacks to the microprogramming approach
described so far is the slow speed of presently available low power P-channel
MOS memories. These memories typically have access times of the order of
one or two microseconds. The clock presantly used in the OBP has a pulse
duration of approximately 320 nanoseconds and a peried of 1500 nanoseconds.
Since all operations must be completed before the clock pulse goes high,
there are only 1180 nanoseconds per clock period in which to manipulate or
transform data. It is obvious that problems occur with & one microsecond
ROM in these circumstances since the time remaining after the control signals
are available is insufficient for most processor operations.

One solution to this protlem is to use a faster memory such as the
available high speed bipolar TTL memories. However, the power dissipation
for a bipolsr memory of the required size would be more than 100 watts. .This

figure is clearly out of the range of interest for the OBP. On the other hand,

CMOS memories are proposed for the near future which should operate at
sufficlently high speed and require an extremely low amouht of power, These
may provide the best solution when they become available.,




A second possibility is to reduce the clock frequency and thereby
increase the period. Ithhas been calculated that a redustion from the present 447
KHz to 400 KHm would allow sufficient time for a PMOS ROM to operate properly.
It is beyond the scope of this report to determine whether a decrease in fre-
quency of this magnitude can be tolerated. 400 NHz was shown to allow sufficient
time to access a control word and perform an 18 bit addition in one &lock
cycle.

The third method is to compensate for the access time of presently
available ROM's by overlapping the microinstruction fetch with the previous
control word. If the ROM output word is stored in a clocked buffer register,
the next microinstruction can be accessed during the execution of the present
one. The present control word is protected by the buffer since the new output
word cannot enter the register until the next clock pulse. In this way the
necessity of waiting after each microinstruction for the ROM to produce the
next control word is avoided.

The major obstacle to this approach is the amount of hardware needed
to buffer the ROM outputs. To buffer 120 control lines, a like number of
flip flopswill be needed. If discrete flip flops are used this means
increasing the amowt of hardware by approximately one third. However, there
are currently available MSI devices which would reduce the required amount of
hardware and could be placed on the same substrates as the ROM's. The use of
either counters or other MSI functions capable of acting as clocked output
buffers may make this method practical.

Another obstacle to this approach is two clock cycle add time of the
present design. In the context of microprogramming, this means that the same

location must be accessed continuously for two clock cycles in control words
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where additions occur. The control logic needed to accomplish this would
probably be a phase flip flop scheme much like the one presently used.

A preliminary design showed that approximately 50 additional gates
vould be required to produce all the necessary timing conditions. This
approach is undesirable both because it requires a substantial amount of control
logic external to the memory and because it complicates the timing control.

To avoid these problems,iit is auggeateci that a high speed adder be inveatigated.
beboh Bumpary of Microprogrammed Centrol

Microprogrammed control provides a great reduction in the OBP
control logic through the replacement of 70 percent #f the logic by compact
151 memories. The logic which cannot be programmed in the memory can be
effectively partitioned through the use of general purpose logic structures,

Although the speed of presently available P-channel MOS memories
presents some design problems, it is anticipated that these will be avoided
when large densely rackaged CMOS memories become available. The use of
CMOS memories will also greatly reduce the power requirements of the OBP,

The adoption of a one clock cycle adder will also enhance the advantages
offered by this design approach.

Because most. of the connections in a microprogrammed control unit are
made on the memory chip itself, the number of necessary wired connections
is relatively small., Consequently system reliability should be improved.

4.5 Syumary of Task 3

Both approabhes desciibed above will facilitate the partitioning
of the OBP control logic. However, the general purpose logic structure approach
is really only a partial solution in that by itself it allows only soms of
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the reductions that are possible when it is used in conjunction with micropro=-
gramming. As mentioned above, it should be possible to mount the control

on 52 sixty pin substrates, using the general purpose logic technique alone.
If, on the other hand, most of the logic is incorporated into a memory, and
general purpose structures are used to partition the rest, it is estimated
that 20 sixty pin substrates should be sufficient. If 90 pin packages are
made available, the numbers of required substrates for the two techniques

can be reduced to 27 and 10 respectively.

Based on these results it appears that the optimum design approach
is to employ microprogramming to the maximum extent possible, using general
purpose logic structures to partition the remaining logic. Since it has been
shown that significant reductions in the required number of substrates can
be made by relaxing pin limitations, it is further suggested that the
possibility of using substrates with more pins be seriously oconsidered.

It should be noted that although the use of substrates has been
assumed t.roughout this section, the results apply equally to any type of
replaceable package (e.g., printed circuit cards, etc.). Substrates were

used because they appeared to be the most likely packaging device for the
next generation OBP.
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